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Abstract. A generalisation of the two-dimensional X Y  model is studied using Monte Carlo 
simulation. In this model, two-component, classical spins interact both ferromagnetically 
and nematically. Three phases occur as temperature and the two interaction strengths 
are varied: a high-temperature, disordered phase, and two low-temperature phases with 
algebraic correlations in, respectively, the ferromagnetic and nematic order parameters. 
The critical behaviour at the phase boundaries is examined: the high-temperature phase is 
enteredvia Kosterlitz-Thouless transitions, whilst the low-temperature phases are separated 
by an king transition. 

1. Introduction 

There has been recent interest (Korshunov 1985,1986, Lee and Grinstein 1985, Sluckin 
and Ziman 1988) in the statistical mechanics of a class of generalised, two-dimensional 
X Y  models. In these models, classical two-component spins interact with both ferro- 
magnetic and nematic coupling, so the potential energy for a pair of spins has two minima 
as a function of their relative angle. At one minimum the spins are parallel; at the other 
they are antiparallel. The simplest Hamiltonian of this kind is 

H = - [A cos(ei - e j )  + (1 - A)  COS^^, - e,)]. (1) 
(U )  

In this equation e;, 0 S 8; < 2n, indicates the spin orientation at site i; the summation is 
over nearest-neighbour pairs of sites on a square lattice; A ,  0 S A S 1, is the ferro- 
magnetic coupling; and 1 - A is the nematic coupling. 

It has been suggested that this model may represent superfluid 3He films (Korshunov 
1985) and liquid crystal films (Lee and Grinstein 1985). In addition, the model has 
theoretical appeal because of the exotic low-temperature excitations that it supports. 

There are four kinds of excitation that are expected to be important: spin waves, 
integer vortices, domain walls and half-integer vortices. Spin waves and integer vortices 
are familiar from studies of the ferromagneticXY model, A = 1 (Kosterlitz and Thouless 
1973, Kosterlitz 1974). Domain walls and half-integer vortices control behaviour near 
the nematic limit, A < 1. A domain wall is a line (on the dual lattice) across which spins 
are antiparallel. It may either close on itself or end at a half-integer vortex: a point 
singularity around which spin directions rotate through an angle n o n  circumnavigation. 
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Figure 2. The calculated phase diagram 
for the model. The high-temperature 
disordered phase is denoted by P, the 
ferromagnetic phase by F and the 
nematic phase by N .  

These excitations are illustrated in a configuration generated by quenching from high 
temperature (figure 1). 

A phase diagram has been proposed (figure 2) for the model in the A-Tplane (where 
Tis temperature), mainly from considering behaviour near the boundaries T = 0, A = 
0 and A = 1 (Korshunov 1985, Lee and Grinstein 1985). To characterise the phases, two 
correlation functions are important. The first 

G , ( r )  = (cos(&l - 6 , ) )  

is sensitive only to ferromagnetic order, in which spins have a common direction. The 
second 

G2(4 = (cos[2(4l - e,)]) 
is sensitive both to ferromagnetic order and to nematic order, in which spins have a 
common axis but no unique direction. In the high-temperature phase both correlation 



The phase diagram of a generalised X Y  model 4909 

functions are expected to decay exponentially with separation, r .  Algebraic order is 
expected in both quantities in the low-temperature ferromagnetic phase: 

G I  ( r )  - r-7' G,(r) - r-'72 

whilst in the low-temperature nematic phase G I ( r )  should decay exponentially and G2(r) 
algebraically. 

The reasons for anticipating this phase diagram are as follows. Close to the ferro- 
magnetic line (1 - A << l), one has essentially the conventional X Y  model, analysed by 
Kosterlitz and Thouless (1973), and Kosterlitz (1974). At low temperatures, spin waves 
destroy the long-range order of the ground state, leaving power-law decay of cor- 
relations. The high-temperature phase is enteredvia a transition at which integer vortex- 
anti-vortex pairs unbind. On the purely nematic line, a modified version of this picture 
applies. Since, with A = 0, the energy of a configuration depends on spin directions only 
modulo n, Gl(r)  is necessarilyzero for r # 0. By the same argument, half-integer vortices 
are possible. One therefore expects a half-integer vortex-unbinding transition at which 
the decay of C,(r) changes from power-law to exponential. Finally, the transition 
between the two low-temperature phases is best understood in the low-temperature, 
nematic corner of the phase diagram: T and A small. This transition is driven by domain 
walls, which have an energy per unit length roughly proportional to A .  By analogy with 
the Ising model, the wall free energy is expected to decrease with increasing temperature. 
At a critical temperature of order A (still supposing A << l), the wall free energy vanishes, 
domain walls proliferate and the system passes from the ferromagnetic to the nematic 
phase. This transition is of particular interest since neither of the phases it separates 
have long-range order, yet it is expected to belong to the two-dimensional king uni- 
versality class. 

The aim of the present work is to test these ideas by Monte Carlo simulation of the 
model given as (1). We are able to identify the three transitions described, and also the 
multicritical point at which the three phases meet. These calculations complement an 
earlier numerical study by Sluckin and Ziman (1988), who mapped the two-dimensional 
statistical mechanical model onto a one-dimensional quantum spin chain. 

2. Calculation and results 

The Metropolis algorithm was used to calculate specific heat and the correlation 
functions, G,(r) and G2(r),  for the model defined by (1). Systems of sizes from 4' to 64' 
spins were studied. Initial work (figures 3-5) used 8 X lo3 Monte Carlo steps per spin, 
at each of 330 points in the A-T plane; subsequent calculations (figures 6-10> used 
8 X lo5 Monte Carlo steps per spin at selected values of A .  

The algorithm was implemented on a processor array consisting of 17 INMOS T-414 
Transputers. Details of the computational techniques have been described elsewhere 
(Askew et all986, 1988). 

Broad confirmation of the proposed phase diagram is provided by the measured 
specific heat and inverse susceptibilities. The susceptibilities are integrals of the two 
correlations functions 

Algebraic decay, G(r) - lr1-7, of a correlation function in a low-temperature phase 
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Figure 3. The specific heat of the model in the A- 
Tplane. 

Figure 4. The inverse ferromagnetic suscepti- 
bility, x;'. 
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Figure 5. The inverse nematic susceptibility, x;' Figure 6. The specific heat at A = 1 (pure ferro- 
magnetic X Y  model). The broad maximum 1s 
associated with vortex unbinding. The symbols 
U, V ,  0 and 0 denote system sizes of 42, 82, 16* 
and 322 respectively. 

implies that the associated susceptibility diverges with (linear) system size, L ,  as 
x - L2-q. 

The specific heat (figure 3) has a sharp ridge along the anticipated locus of the king 
transition between the ferromagnetic and nematic low-temperature phases, which is 
consistent with a logarithmic divergence (as for the two-dimensional Ising model), cut 
off by finite system size. A second ridge in the specific heat, broader, lower and at higher 
temperatures, is associated with vortex unbinding; its maximum is expected to lie above 
the Kosterlitz-Thouless transition temperature (Kosterlitz 1974). The phases can be 
identified by the behaviours of the inverse susceptibilities, x;' and xi'. Both fall to zero 
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Figure7.Thespecific heat at A = 0.25. Thesharp, 
lower-temperature peak is associated with an 
king transition, and the broad, higher-tempera- 
ture maximum with vortex unbinding. Symbols 
indicate system sizes as in figure 6. 

Figure 8. A double-logarithmic plot of ferro- 
magnetic susceptibility against system size for 
A = 1: InX, versus In L. The symbols ., U,., 0, 
. . . , 'I indicate temperatures T = 0.75,0.80, . . . , 
1.25 respectively. 

(for large L )  in the ferromagnetic phase; x;' is non-zero and x;' is zero in the nematic 
phase, and both are non-zero in the high-temperature phase. Figures 4 and 5 illustrate 
this. 

A more detailed study of the specific heat has been made at two values of A: A = 1, 
the ferromagnetic X Y  model; and A = 0.25, for which all three phases can be reached 
by varying temperature. The similarity between the specific heat maximum associated 
with vortex unbinding at A = 1 (figure 6 )  and the corresponding (higher-temperature) 
maximum at A = 0.25 (figure 7) is striking. The lower-temperature specific heat peak 
at A = 0.25, marking the Ising transition, has an amplitude that increases progressively 
with system size. One expects from scaling ideas (Ferdinand and Fisher 1969) that the 
peak height should be logarithmic in system size, and the increase in peak height with 
each doubling of system size is indeed roughly constant. 

Algebraic decay of correlations in the low-temperature phases has been demon- 
strated by a finite-size scaling analysis of susceptibilities, also at A = 1 and A = 0.25. In 
the low-temperature phase of the purely ferromagnetic X Y  model (A = l ) ,  one expects 
1112' to vary linearly with In L ,  with slope 2 - q .  In the high-temperature phase, In x1 
has a limiting value for large L. This behaviour is demonstrated in figure 8. Furthermore, 
since q = d at the Kosterlitz-Thouless transition (Kosterlitz 1974), the critical point can 
be identified as the temperature at which In x1 versus In L has slope $ .  Values of q T )  
derived in this way are shown in figure 9, from which we estimate T, = 0.93. The result 
is in reasonable agreement with a recent, very extensive study of the purely ferromagnetic 
X Y  model (Gupta et a1 1988), which gave T, = 0.898 k 0.002. Similar algebraic decay 
of nematic correlations at A = 0.25 is illustrated in figure 10. 

3. Conclusions 

The statistical mechanics of this generalised X Y  model was analysed by Korshunov 
(1985) and Lee and Grinstein (1985), mainly by considering the low-energy excitations. 
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Figure 9. Values of 2 - ,( 7') versus temperature 
for A = 1, derived from figure 8. 

Figure 10. A double-logarithmic plot of nematic 
susceptibility against system size for A = 0.25: In 
x 2  versus In L. The symbols W, U. 0,0, . . ., V 
indicate temperatures T = 0.50, 0.55, 0.60, . . . , 
1.00 respectively. 

Such an approach is necessarily exact only in the low-temperature limit. The results of 
Monte Carlo simulation described in the present paper support their earlier conclusions 
and confirm the power of their approach. Finite-size scaling analysis of susceptibilities 
demonstrates the existence of two low-temperature phases with power-law correlations. 
The behaviour of the specific heat supports the idea that the transition between these 
low-temperature phases is in the two-dimensional Ising universality class, and that the 
high-temperature phase is reached via vortex-unbinding transitions. 
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